Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins.
نویسندگان
چکیده
The antiapoptotic proteins, Bcl-2 and Bcl-X(L), are expressed in most cases of acute myeloid leukemia (AML) and may contribute to drug resistance in AML. We tested the hypothesis that down-regulation of Bcl-2 alone by antisense oligodeoxynucleotides (Bcl-2-AS) induces apoptosis, even in the presence of other antiapoptotic genes. We tested Bcl-2-AS in myeloid leukemic HL-60 cells, in Bcl-2 and Bcl-X(L) overexpressing HL-60-DOX cells, and in primary AML samples. Down-regulation of Bcl-2 by Bcl-2-AS reduced the viability of HL-60 cells and, less effectively, HL-60-DOX cells and increased ara-C cytotoxicity in both cell lines. Incubation of primary AML blasts with Bcl-2-AS decreased Bcl-2 expression in CD34(+) blast cells after induction of apoptosis and enhancement of ara-C cytotoxicity in 11 of 19 primary AML samples. In 8 samples in which Bcl-2-AS did not induce apoptosis, baseline Bcl-2 levels were found to be strikingly high. The expression of other antiapoptotic proteins (Bcl-X(L), Bag-1, A1, and Mcl-1) did not prevent Bcl-2-AS-induced apoptosis. Bcl-2-AS also inhibited colony formation of AML progenitor cells. Low concentrations of Bcl-2-AS induced significant increases in S-phase cells (P =.04). Results establish Bcl-2 as a critical target for AS strategies in AML in which the baseline levels predict response to Bcl-2-AS. Bcl-2 exerts both antiapoptotic and antiproliferative functions in AML. Because early normal hematopoietic stem cells do not express Bcl-2, Bcl-2-AS therapy should be highly selective for AML cells. (Blood. 2000;95:3929-3938)
منابع مشابه
Enhanced efficacy of therapy with antisense BCL-2 oligonucleotides plus anti-CD20 monoclonal antibody in scid mouse/human lymphoma xenografts.
Monoclonal anti-CD20 antibody (rituximab) is active, but not curative, therapy for B-cell non-Hodgkin's lymphoma. BCL-2 is an antiapoptotic protein whose expression is dysregulated in most indolent B-cell malignancies. Antisense oligonucleotides (AS-ODNs) that down-regulate BCL-2 expression induce apoptosis and chemosensitize B-cell lymphoma cells. We hypothesized that BCL-2 down-regulation by ...
متن کاملPharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction.
The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling--the continuing reduction of oxygen without ATP synthesis--has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from...
متن کاملA Polyethylenimine-Containing and Transferrin-Conjugated Lipid Nanoparticle System for Antisense Oligonucleotide Delivery to AML
Limited success of antisense oligonucleotides (ASO) in clinical anticancer therapy calls for more effective delivery carriers. The goal of this study was to develop a nanoparticle system for delivery of ASO G3139, which targets mRNA of antiapoptotic protein Bcl-2, to acute myeloid leukemia (AML) cells. The synthesized nanoparticle Tf-LPN-G3139 contained a small molecular weight polyethylenimine...
متن کاملCorrection: Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides
Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphoti...
متن کاملInduction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1
Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 95 12 شماره
صفحات -
تاریخ انتشار 2000